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We prove some general addition theorems for certain matrix elements which involve hydrogen-atom wave 
functions. In particular, if fnimiq) is the Fourier transform of the hydrogen-atom wave function with quan
tum numbers n,l,m, then |/nzm(q)|2 summed over all / and m for a given n is equal to 267ra<f6»~3 

X (g2+0(f V - 2) - 4 , where a0 is the Bohr radius. Two applications of the theorems are given. Firstly, we con
sider charge-exchange reactions of the type H+-j-H(wi/imi) —* H (n^hm**) -f-H+ and use our general theorems 
to obtain for the cross section for reactions proceeding from the initial atomic state n\ to the final state W2 an 
expression which is both simple and fully exact (in Born approximation). Secondly, we indicate how the 
theorems may be applied to get simple expressions for the cross sections for ionization of excited hydrogen 
atoms by various processes. 

1. INTRODUCTION 

IN this paper we consider some addition theorems for 
the Fourier transform of the simple H-atom wave 

function <£nZm, 

(1) /nim(q)= 7 dx4>nim{t) exp(iq«r), 

where n91, m are the usual H-atom quantum numbers. 
Such expressions do not often occur in physical con
texts, matrix elements containing two atomic wave 
functions being more frequently met. However, (1), 
and the related function g(q) defined below, can occur 
as the matrix elements in charge-exchange problems, 
and in expressions for cross sections for ionizing excited 
H atoms. 

In Sec. 2 we prove the following useful theorem: 

n - l I 2VX5 

E E \fnlm(q)\2 = 
1 

nz (q2+\2n-2Y 
(2) 

(X is the inverse of the Bohr radius). Physically, the 
simplicity of this and allied results may be expected 
from the remark that the wave functions <t>nim(*) form 
a complete set with respect to square integrable func
tions1 (although in Hilbert space one must add to 
{<t>mm} the free-electron Coulomb wave functions to 
complete the set). It is then reasonable to expect that 
the angular part of the completeness (which is the part 
involved in summing over I and m) will lead from the 
left-hand side of Eq. (2) to a simple expression in n and 
q. The rigorous proof in Sec. 2 follows these lines. 

Equation (2) is a special case of a more general 
relation which may be proved for 

«—1 I 

E E /nlm(q)/n^*(q/)« (3) 

1 See, for example, R. Courant and D. Hilbert, Methods of 
Mathematical Physics (Interscience Publishers, Inc., New York, 
1953), Vol. I, p. 95. 

This more general result [see Eq. (24)] can be ex
pressed in terms of Tschebyscheff polynomials. Results 
such as (2) for functions like |/wjm(q) |2 summed over / 
and m are useful in evaluating cross sections, while 
results for the summand |/nZm(q)/nim(q') | serve in the 
evaluation of transition probabilities for individual 
impact parameters.2 

Results for the sum over the quantum numbers m 
only (m— — I to +1) for the summand |/(q)/(q') | and 
the special case l/(q)|2 are also obtained en route in 
Sec. 2. 

The above discussion, and that in Sec. 2, have been 
given for the Fourier transform of the H-atom wave 
functions, /»zm(q): in Sec. 3 we show how any ex
pression for /(q) can be trivially converted into an 
expression for the matrix element 

f dt 
gnim(q)= / —*nim(r) exp(iq-r) (4) 

by use of the relationship (28). For example, use of 
(28) gives immediately, 

«-i i 2VX3 1 
E E |gnZm(q)|2 = 
z»o m—i n3 (q2+\2nr2)2 

(5) 

The matrix elements /(q) and g(q) are the only ones of 
interest in the physical contexts which prompted the 
present investigation: however the technique used in 
Sec. 3 to relate /(q) and g(q) can be extended to 
generate other related matrix elements, for which the 
analogs of Eqs. (2) and (24) can then be obtained. 

In Sec. 4 we outline two applications of the addition 
theorems. 

Firstly we consider charge-exchange reactions of the 
type 

H++H(fh/!Wi) -> H(^ 2 w 2 )+H+. (6) 

2 The sum over all impact parameters which leads from indi
vidual transition probabilities to total cross sections introduces a 
factor 5(q—q'). 
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We sum over the final-state quantum numbers h and 
W2, and average over the initial quantum numbers h 
and wi, to get the total cross section for reactions pro
ceeding from the initial atomic state n\ to the final 
state n%\ 

<r«»i}|»2) 

1 ni—1 h ri2—l h 

= — L Z Z Z €r(nihmi\nj2fni). (7) 
f^2 Zl«=0 mv=*— h h=0 m2*a*—h 

{n-? is the total degeneracy of the state with principal 
quantum number n\.) The resultant simple expression 
(37) for (r{{ni)\fi2) is fully exact in Born approximation. 
Previous work in this field comprises calculations of 
<r(l\n2h) for # 2 ^ 4 3 and approximate results for 
ft2^>l,A~7 together with numerical calculations of 
c(20|w20) and <r(60\n20) for all n%* [There is, of course, 
extensive work on the special case of ls-ls transitions, 

As a second application, we consider the ionization of 
H atoms by various mechanisms, namely collisions with 
massive particles (ions and atoms) and photoelectric 
ionization (again in Born approximation). The cross 
sections for such processes contain matrix elements of 
the form (1). Particularly when the H atom to be ionized 
is in a highly excited state, the present theorems are 
seen to lead to simple expressions for the cross sections. 

2. THEOREMS ON fntm(q) 

We now proceed to evaluate the sums over m, and 
over I and m, of the function /nim(q)/ni*»*(q')-

We begin by writing down the wave functions for 
the simple H atom : 

Rm(r) = 
2X3/2rfa-/--l)!l1 '2 xl(rx* 

n2 { (»+/)! J (n+l)l 

where for convenience x is defined by 

x^2kr/n. 

(7) 

• Z , _ _ i « + 1 ( * ) , (8) 

(9) 

X is the inverse Bohr radius, \—l/ao=fne2/fi>2, and the 
Laguerre polynomials are defined by the generating 
function 

exp(-a*/(l--fl) - W + K * ) 

( l-f l ! ,2Z+2 <-o(i+2/+l)! 
(10) 

8 D. R. Bates and A. Dalgarno, Proc. Phys. Soc. (London) A66, 
972 (1953). 

4 J. R. Oppenheimer, Phys. Rev. 31, 349 (1928). 
6 S . T. Butler, R. M. May, and I. D. S. Johnston, Phys. 

Letters (to be published). 
6 S . T. Butler and I. D. S. Johnston, Nucl. Fusion (to be 

published). 
7 R. M. May, Nucl. Fusion (to be published). 
8 J. R. Hiskes and M. H. Mittleman, U. S. Atomic Energy 

Commission Report UCRL-9969 1962, p. 128 (unpublished). 

We then use the standard expansion 

exp(tq.r) = f; il(2l+l)ji(qr)Pi(cos&) (11) 

together with the addition theorem for spherical 
harmonics, 

(2H-l)P,(costf) = 4ir E YUOftiYuSWd'),. (12) 
trv=>—l 

where 0, <j> are the polar angles of q, and 0', <£' those of r, 
referred to some fixed axis. Equation (1) for /nzm(q) 
now reads 

Jfnj»(q) = 4flr E il'YVm,(e$) I drRnl(r)jv(qr) 
I'm' J 

XYlmYVm^. (13) 

The orthogonality relation for spherical harmonics, 
together with the addition theorem (12), now leads 
directly from (13) to 

£ /n^(q)/n^*(q ,) = 47r(2/+l)/n?(g) 

X/nlfoWcOS*), (14) 

where <j> is the angle between the vectors q and q', and 
I(q) is the integral 

/•oo 

Jo 

n \{n-l-l)\\ll2 1 /•-
= J I / xl+2e~-

4X"*l (n+l)\ \ (n+l)lJo 

Xji{zx/2)L^Uw(x)dx. (15) 

x/2 

z is defined by 
z=nq/\. (16) 

The integral in (15) may be expressed in terms of 
Gegenbauer polynomials as9 

F 
J o 

e~xl2xl+2jl {z%/2)Ln^l+l (3.) = 

X 

8(2x)1%(^+/)! 

(*2+l)2 

z2-l\ 2z ) l fz2-\\ 
YT^M 1, 

z2+V \z2+lJ 
(17) 

ls?+li \Z2+V 

where T^(y) is the Gegenbauer polynomial, defined by 

9 This expression may be obtained straightforwardly by use of 
the generating functions (10) and (18) for the Laguerre and 
Gegenbauer polynomials together with the integral. 

f rl+1ji(ar) exp(-br)dr=2ll\al{o?+b*)-l-K 

See also H. A. Bethe and E. E. Salpeter, Quantum Mechanics of 
One- and Two-Electron Atoms (Academic Press Inc., New York, 
1957), p. 39. 
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the generating function 

2 0 7T1'2 oo 

= E-WOy). (18) 
(l+fi-2ty)t»* r (0+i)« 

Ti°(y) are just the Legendre polynomials Pi(y), and 
7Y/2(y) are Tschebyschefl polynomials. 

Introducing the notation 

s 2 - l (s ' ) 2- l 
cos0= ; cost's 

Z2+l 

and consequently 

22 2zf 

(19) 

(20) sin0= ; sin0' = -

z2+l (zj+l 

we may use (15) and (17) in Eq. (14) to write 

i 2Vw*(2/+l) 
E /nZm(q)/nZm*(q / )= = 

*.—I X3(s2+l)2(2/2+l)2 

X (sin0 sin0')' 
(n+l)\ 

xr^wH-Kcos^r^wH-Kcos^r^Ccos*). (21) 

Putting q=q' implies 0=0' and <£=0, so that we have 
as a special case 

E l/»i*(q)l2= 
»--i X3(22+l)4 (n+l)l U2+1J 

\2 2 +l / J 
, (22) 

which could be useful in some physical contexts. We 
proceed to the much simpler expressions obtained on 
summing over /. 

An addition theorem for Gegenbauer polynomials 
states that10 

E (2/+l)[(^-/- l)! /(^+OO(sin0sin0 /) z 

xr7l_z_i«(cos0)rn_z_1^(cos0,)ri°(cos0) 

= (2/7r)1/2rM_1
1/2(cos0 cos0'+sin0 sin0' cos0). (23) 

Using this in (21) leads to the result 

n-l I 2 W 
E E /«i»(q)/ni»*(qO = — — ; 
z=o «—i X3(2TT)1/2 

1 
X Tn_i1/2(cos0 cos0' 

(2
2+l)2((2')

2+l)2 

+ sin0 sin0' cos0), (24) 
10 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 

(McGraw-Hill Book Company, Inc., New York, 1953), Vol. I, 
p. 784. 

where 0 and 0' are given in terms of q and qf by the 
definitions (16) and (19), and <j> is the angle between 
the directions of q and q'. 

Finally, in the special case when q=q' we have 0=0' 
and 0 = 0 which, together with the fact that 

rn_1
1/2(l) = (2/7r)1%, 

leads to Eq. (2), namely 

(25) 

E1 £ |/^m(q)|2=2VwVX3(22+D4. (26) 

The above Eq. (24), which is relevant to certain 
impact parameter calculations, seems to be rather 
complicated in the general case (cos0 cos0'+sin0 sin0' 
Xcos# is not a simple function of q and q'); however, 
for small n the equation is simple, and for large n 
asymptotic forms may be employed. 

3. THEOREMS ON gnUn(q) 

For the physical applications we have in mind, we 
need not only /w?m(q) but also the matrix elements 
gnzm(q) denned by Eq. (4). A relation between /»jw(q) 
and gnzm(q) involving only q and n may be obtained 
directly from the Schrodinger equation for the H atom. 
In three-dimensional form, the wave equation for an 
eigenvector with principal quantum n reads 

- Wnzm(r) - (2X/r)0.im(r) = - (\2/n2)<f>nlm(r). (27) 

Taking the Fourier transform of this equation with 
respect to q, and using the fact that (j>nim(t) vanishes at 
infinite distances, we get 

(q2+X2n-2)fnim(q) = 2\gnlm(q) (28) 

with /(q) and g(q) denned by (1) and (4). 
Thus each of the addition theorems (21), (22), (24), 

and (26) may be converted to the corresponding equa
tion involving the functions g(q), since the conversion 
factor [namely (z2-\-l)/2n] is dependent only on the 
principal quantum number n and the modulus of the 
vector q. 

A family of other matrix elements may be related to 
f(q) by multiplying the Schrodinger equation by powers 
of r before performing the Fourier transform: for ex
ample multiplication by r~l leads to 

r dt 

J r2 I'-rl exp(iq»r) 

=—(q2+\2n-2)2fnim(q). (29) 
4X2 

Addition theorems corresponding to (24) and (26) are 
then obtained for these Ielated matrix elements; how
ever, since we have no application in mind for these 
functions we shall not consider them further. 
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4. SOME APPLICATIONS 

In this section we consider two applications of the 
general theorems (2) and (5) which have been proved 
in Sees. 2 and 3. 

Firstly we consider charge-exchange reactions of the 
type H++H(^i/imi)—»11(^2/2^2)+H+. For such re
actions proceeding from the initial H-atom state nihmi 
to the final state mhnii we can write the cross section 
in Born approximation as11 

or {nihmi I n2l2m2) = {2irp)~2 / / dgjgy | /1 (q) |2 

X|g2(Q)|2 , (30) 

where the proton mass has been taken as infinite, and 
p is the (dimensionless) speed of the incident proton 
relative to the target H atom: 

p—hv/^. (31) 

The proton has been taken incident along the z axis, 
and the vectors q and Q consequently have components 

We also note the identity12 

q2+\2/nl
2 = Q2+X2/n2

2. 

(33) 

(34) 

The matrix elements /(q) and g(Q) in (30) are, of 
course, just those defined by Eqs. (1) and (4) above. 

If we now sum over the final-state quantum numbers 
h and m2 for a given n% and average over the initial 
quantum numbers l\ and m\ for a given nh we can 
immediately make use of the theorems (2) and (5) to 
write 

28X8 f f dqjqy 

cr«n1>|nJ) = / / • (35) 
p2m5n2

z J J (qx
2+qy

2+\W 

This total cross section is defined by Eq. (7), and 

11 See Refs. 3 or 4. We have written Eq. (30) in the form in 
which it appears from an alternative impact parameter calcu
lation given in Ref. 6. Such an impact parameter derivation was 
first given by J. A. Gaunt [Proc. Cambridge Phil. Soc. 23, 732 
(1927)] in a different context. The identity between such impact 
parameter calculations and the usual Born approximation has 
been rigorously established by J. W. Frame [Proc. Cambridge 
Phil. Soc. 27, 511 (1931)]. For an excellent summary see T-Y. 
Wu and T. Ohmura, Quantum Theory of Scattering (Prentice-Hall, 
Inc., Englewood Cliffs, New Jersey, 1962), Sec. M. 

12 A general symmetry theorem for rearrangement collisions 
[see for example M. Gell-Mann and M. L. Goldberger, Phys. Rev. 
91, 398 (1953)] asserts that in the expression (30) for the cross 
section it does not matter whether we take | / i (q)^(Q) | or, 
instead, |gi(q)/2(Q) |. From the relation (28) between /(q) and 
£(q) together with (34) we can understand the bookkeeping in 
this symmetry theorem. 

fi(p,ni9n2) is defined as 

^'•"•}-Up'+2f&X'-^)\ •(36) 
The integral in (35) is trivial, and we thus get for the 
cross section in Born approximation the fully exact 
result 

<j{{ni)\n^)^Tra^-
1 

5wi5#2
3 p2$h 

(37) 

For the special case where the initial H atom is in 
the ground state (wi=l, h=0, Wi —0), Eq. (37) yields 

<r(\\n^ = icati 
1 

5n2* p2{a(p,n2)y 
(38) 

with a (p,n2) given by the appropriate specialization of 
(36): 

a(p,n2) =—\p*+2f(l+—Wl ) 
4pH \ nil \ nil 

~{(f+l)/2p}* for w 2 »l . 

(39) 

(40) 

For a second application of our theorems, we con
sider the ionization of H atoms both by the photo
electric process and by collisions with ions and atoms. 

Suppose we have a H atom, with initial quantum 
numbers n, I and m, which is to be ionized by photons, 
with energy ĉo, incident along the z axis and polarized 
with their electric vector along the x axis. We assume 
that the final state of the electron can be written to 
sufficient accuracy by the plane wave <^(r)=L~3/2 

Xexp(ik«r) (this corresponds to Born approximation). 
Then for the differential cross section we can write the 
standard result13 

a(nlm\k)dQ= 
e2kk 

lirfnco) 
dr<t>nim(r)e^'T dtt, (41) 

where the modulus of the final-state wave vector k is 
given by 

k2^2rnu/ti-\2/n2. (42) 

The vector q in the matrix element is given by the 
analog of Eq. (32) for this problem: 

<-k. (43) 

K is the wave vector of the photon, having modulus 
o)/c and directed along the z axis. 

If we wish to find the average cross section for 
photoelectric ionization of H atoms with a given initial 
principal quantum number n, we average over / and m, 

13 See, for example, L. I. Schifl, Quantum Mechanics (McGraw-
Hill Book Company, Inc., New York, 1955), p. 273. 
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Noting that the matrix element in (41) is of the form 
(1), we may use theorem (2) to write the average 
differential cross section 

r«»>|k)(K2 = -
32e2Xbkkx

2 do, 

mco)nb { (K-k) 2 +AV- 2 } 4 
(44) 

The total cross section is found by integrating over 
angles for k and is 

r((n)\k)-
128ir(?\6 ¥ 

Zmcun* {(X2fT2+k2+K2)2-4:k2K2}2 
:> (45) 

with k2 given in terms of co and n by Eq. (42). The 
Born approximation will be valid so long as the in
coming photon frequency is large compared to the 
initial characteiistic frequency of the atomic electron: 
Using (42) this criterion can be expressed in terms of 
the speed of the outgoing free electron (mv^fik) as the 
requirement 

fiv/e2>l/n. (46) 

In the limit where the initial atom is in a highly excited 
state [and in general so long as (46) is strongly fulfilled], 
we may simplify Eq. (45) to read 

<T((n)\k) = 7raQ2-
256a/a\\V2 

3n* (l-a/c/2X)4 
(47) 

where a is the fine-structure constant, a — e2/fic. Equa
tions (44), (45), and (47) are well-known results in the 
most interesting case when the H atom is initially in 
its ground state, n—1. 

We next consider the case where the H atom is 
ionized by collisions with massive particles (massive in 
the sense that their mass may be taken to be infinite 
compared to the electron mass). 

By means of an impact parameter calculation similar 
to that performed in Ref. 6, we get an expression14 for 
the cross section for ionization of a H atom (initially in 
the state n, I, m) by bombardment with massive par
ticles (incident parallel to the z axis and with speed v 
relative to the target atom): 

r (nlm I k) = 
(2<jrfiv)2U 

fdq\ 
iv)2D J 

2ir J__c 

U{q)\ 

dz exp{iz(o)nk/v+qz)} , (48) 

*7(q)= / dRV(R)e*'* dr<j>nlm(r)e^-u-*. (49) 

Again the final state is represented by plane waves 
with wave vector k (i.e., Born approximation): ficonk is 

14 This is a simple generalization of the expression given by Wu 
and Ohmura [Ref. 11, p. 225, Eqs. (M56) and (M57)]. 

the electron energy difference, 

unk/v^~-(\2n-2+k2)/2\py (50) 

with p defined by (31). V(r) is the interaction potential 
between an electron and the passing particle when they 
are separated by a distance r, and V(q) is the Fourier 
transform of this potential: for example if the ionizing 
particle is a proton, 

V(t) = e2/r; V(q) = ^e2/q2 (51) 

and if it is a H atom in the ground state, 

dR 
V(t) = - I $100 (R) | 

r J | r - R | 

F(q) = 4«2(8X2+g2)/(4X2+g2)2. 

(52) 

We see that (48) contains a matrix element of just 
the kind defined by (1). If we average over all I and m 
for a target H atom in the given excited state n, we 
may use our theorem (2) to get 

*«»>|k) = 
24X5 

ir& (fiv)2n5 
dq8(qz+conk/v)\V(q)\2 

X{A%- 2 +(q-k ) 2 }~ 4 . (53) 

If we now compute the total cross section for ionizing 
collisions, by integrating over all final states k [using 
the density function p(k)dk= (27r)~3.L3dk], we get an 
expression which in general will be reasonably tractable: 

2X5 f f 

THfiv)2nb J J 

X | V(q) \2{\2n~2+ ( q - k ) 2 } - 4 . (54) 

The special case of target H atoms in the ground state, 
n=l, is of course well known for all physically inter
esting interactions V(r). 

Our expression (54) also leads to a particularly simple 
expression in the limit ri5>\ provided that F(q) is 
regular and square-integrable. [Our exemplifying po
tential (51) is not regular at the origin, but (52) is both 
regular and square-integrable.] In this limit we notice 
that because of the last factor in the integrand in (54) 
we must have | k | = |q | up to order 1/n2, so that (54) 
can be written as 

*«*>|free) = - f dq\ V(q)\25(qs- (q2/2\p)). (55) 
(2TT^)2 J 

We have neglected all terms of relative order 1/n2, 
which will be permissible in the limit ri^>l provided 
V(q) satisfies the conditions required above. Equation 
(55) can be written in simpler form as 

a((n) |free) = 
1 f2Xp 

= / < 
2ir(iiv)2J0 

qdq{V(q)}2 (56) 
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We have given no illustration of the use of the more 
complicated addition theorem (24) for |/(q)/(q')l- We 
plan to use this result in an impact parameter calcu
lation to examine the validity of Born approximation 
for the charge-exchange cross section a({ni)\n2) for 
various values of n± and n2. 

1. INTRODUCTION 

R ESONANT electron capture in violent (or close) 
• single encounters in symmetrical or "resonant" 

ion-atom systems has been studied in several experi
ments1 and the pertinent theory2-4 explains many of the 
observed features. However, a somewhat similar phe
nomenon found in the unsymmetrical or "nonresonant" 
reaction 

H++He -> H+He+, (AE= +11 eV) , (1) 

is not well understood. 
Differential scattering measurements of the above 

reaction were first made by Ziemba et al.5 These covered 
the energy range of 2 to 180 keV. The incident protons 
were driven through the electronic structure of helium 
atoms at impact parameters sufficiently small to deflect 

* This work was supported by the U. S. Army Research Office, 
Durham. 

1 Experiments on symmetrical case: H + on H : G. J. Lockwood 
and E. Everhart, Phys. Rev. 125, 567 (1962). He+ on He: Data 
from 0.4 to 250 keV, G. J. Lockwood, H. F. Helbig, and E. Ever
hart, Phys. Rev. 132, 2078 (1963); data from 0.03 to 0.60 keV, 
W.Aberth and D. C. Lorents (to be published), and Bull. Am. 
Phys. Soc. 9, 427 (1964). Ne+ on Ne: P. R. Jones, P. Costigan, 
and G. Van Dyk, Phys. Rev. 129, 211 (1963). Ar+ on Ar: P. R. 
Jones, in Proceedings of the Third International Conference of the 
Physics of Electronic and Atomic Collisions, edited by M. R. C. 
McDowell (North-Holland Publishing Company, Amsterdam, 
1964). H2

+ on H2, Ne+ on Ne, Kr+ on Kr: See Ref. 5 below. 
2 D . R. Bates and R. McCarroll, Advan. Phys. 11, 39 (1962); 

See also Refs. 6 and 8. 
3 W. L. Lichten, Phys. Rev. 131, 229 (1963). 
4 E . Everhart, Phys. Rev. 132, 2083 (1963). References 2-4 

list many other papers concerned with the symmetrical case. 
5 F. P. Ziemba, G. J. Lockwood, G. H. Morgan, and E. Ever

hart, Phys. Rev. 118, 1552 (1960), See Fig. 4(c) and Sec. 4c for 
early H + on He data. 

ACKNOWLEDGMENTS 

It is a pleasure to thank Professor S. T. Butler for 
stimulating discussions, and Professor H. Messel for 
the excellent facilities provided. This work was sup
ported in part by the Nuclear Research Foundation 
within the University of Sydney. 

the fast particles through an angle of 5°. The proba
bility Po of electron capture by a proton in such a single 
collision was measured. When Po was plotted versus 
incident energy P, a damped resonant structure was 
seen. 

The purpose of the present study is to repeat these 
measurements of H+ on He collision with considerably 
improved accuracy, and further, to study the angular 
dependence as well as the energy dependence of the 
quantity Po, thus varying both the impact parameter 
and the velocity of the collision. 

In addition, similar measurements of the inverse 
reaction, 

He++H-> He+H+, (AE= - 1 1 eV) , (2) 

are also studied here, making use of the atomic hydrogen 
target chamber previously developed for the H+ on H 
studies.1 

There is, at present, no published theory in a form 
readily applicable to the reactions (1) and (2) under 
study here. The general theory of charge transfer in 
nonresonant collisions is that of Bates, Massey, and 
Stewart6 as improved by Takayanagi,7 and Bates and 
McCarroll.8 Further contributions by Bates and Lynn,9 

6 D. R. Bates, H. S. W. Massey, and A. L. Stewart, Proc. Roy. 
Soc. (London) A216, 437 (1953). See, particularly, Eqs. (120) to 
(129) on p. 454. 

7 K. Takayanagi, Sci. Repts. Saitama Univ. (Japan) 2A, 33 
(1955). 

8 D . R. Bates and R. McCarroll, Proc. Roy. Soc. (London) 
A245, 175 (1958). See particularly Eqs. (12) to (18) p. 177. 

9 D. R. Bates and N. Lynn, Proc. Roy. Soc. (London) A253, 
141 (1959). 
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Differential measurements of electron capture probability P 0 are made for close encounters in the reaction 
H+-f He —> H-f He+. The energy range of the incident proton is 1.6 to 180.0 keV and the scattering angle is 
varied from § to 4°. The impact parameters associated with these collisions extend from 0.015 to about 
0.50 A. There is little angular dependence to the data. When P 0 is plotted versus energy, a damped resonant 
structure is seen with peaks at 36, 7, and 2.6 keV with amplitudes of 0.52, 0.16, and 0.05, respectively. The 
phenomena are discussed in terms of the energy-level diagram for HeH+ and with reference to the existing 
theories for charge transfer in the nonresonant case. Measurements of the inverse reaction, He+ ions incident 
on atomic hydrogen targets, are also presented and discussed. 


